

EASY CUB 5GR PANEL

ROOF PANEL WITHOUT FLASHING

EXTERIOR FACE

Pre-painted steel

INSULATION Polyurethane (PUR) and

Polyisocyanurate (PIR)

INTERIOR FACE

Pre-painted steel

THICKNESSES mm (in.)

30/40/50/60 (1.18/1.57/1.97/2.36

USEFUL WIDTH

1000 mm (39.37 in.)

USE

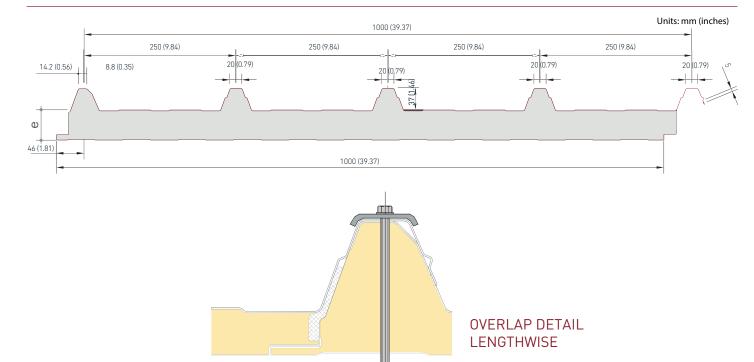
Sloping roof surfaces

TECHNICAL SPECIFICATIONS

Lorem ipsum

MAIN CHARACTERISTICS OF THE 30 mm (in.) PANEL		
Nominal thickness	30 mm (1.18 in.) (± 3 mm/0.12 in.)	
Average foam density	40 kg/m³ (±10%)	
Weight	10.24 kg/m²	
Volume	30 m ² /m ³	
Useful width	1000 mm (39.37 in.) (± 3 mm/0.12 in.)	
Straightness	0 mm (± 5 mm/0.20 in.)	
Contraction - Inflection lengthwise	0 mm (± 5 mm/0.20 in.)	
Compressive strength	0.096 MPa	
Tensile strength	0.092 MPa	
Fire resistance PUR-UNE 13501-1	until B-s2-d0 *	
Fire resistance PIR-UNE 13501-1	until B-s1-d0 *	
Behavior against fire on the exterior	Broof (t1) for sheet thickness \rightarrow 0.4 mm	

(*) consult regarding other classifications


Panel designed for sloping roofs with a minimum incline of 7%. Screw-fastened system with visible fastening, which is carried out in the overlap of two adjacent panels by means of a self-drilling screw that is completed with a bridge (or "capelloti") located in the upper part of the rib made of steel with EPDM. The design of this piece guarantees absolute watertightness of the building's roof.

THERMAL INSULATION AND WEIGHT

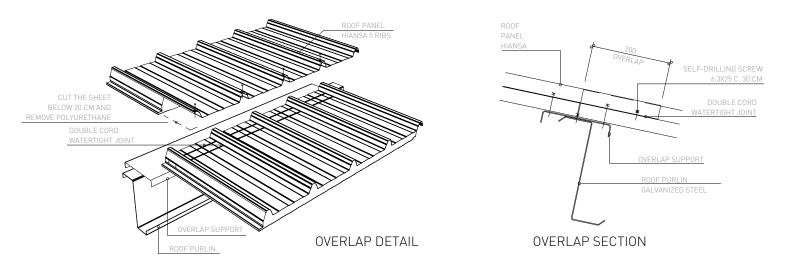
RIBBED PANEL	HEAT TRANSFER		WEIGHT (0.5/0.5)
Nominal thickness in mm (in.)	K in Kcal/ m²·h. °C	K in W/m²⋅k	Kg/m²
30 (1.18)	0.58	0.68	10.24
40 (1.57)	0.45	0.53	10.62
50 (1.97)	0.36	0.43	11.01
60 (2.36)	0.30	0.36	11.42

The weight includes the proportional part of the accessory elements.

GEOMETRIC SPECIFICATIONS

STANDARDS APPLIED

Ref. Standard	Description
EN 14509-2014	Metal double-sided insulated self-supporting sandwich panel. Products made at the factory. Specifications.
EN 13823	Reaction to fire tests of construction products. Construction products, excluding floor coverings exposed to thermal attack caused by a single burning object.
EN 10169	Flat steel products, continuous coated with organic materials (pre-painted). Technical supply conditions.
EN 13501	Classification based on the fire performance of construction products and building elements. Part 1.


CONSTRUCTION DETAILS TRANSVERSE OVERLAP 3GR/5GR ST

CONDITIONS OF THE ROOF FOR MAKING THE OVERLAP

- The roof must have a slope greater than 10%.
- The purlin on which the transverse overlap of panels will be carried out shall have a minimum width of 100 mm.
- The minimum length of the overlap will be 200 mm.

Transverse overlap between roof panels without flashing (designed for waters of considerable length, where the maximum panel size is insufficient).

The roof insulation panels are created with an efficient overlap system (length 200 mm) from the same manufacturing line on request. The overlap between two consecutive panels thus becomes a safe and simple operation since the product undergoes quality control in the same factory.

HIANSA 5 GR ST. PANEL DETAIL VALID FOR ANY TYPE OF HIANSA ROOF PANEL.

RESISTANCE TABLES

30/ ECO (kg/m²)		
	2 Openings	
L	Pressure	Suction
0.8	303	315
1.0	235	247
1.2	191	203
1.4	161	173
1.6	138	150
1.8	121	133
2.0	108	120
2.2	97	109
2.4	88	100
2.6	79	91
2.8	67	80
3.0	57	71
3.2	49	64
3.4	42	58
3.6	37	53
3.8	32	48
4.0	28	44

40/ ECO (kg/m²)		
	2 Openings	
L	Pressure	Suction
0.8	330	355
1.0	256	280
1.2	208	231
1.4	175	196
1.6	150	170
1.8	132	151
2.0	117	136
2.2	105	123
2.4	95	113
2.6	87	105
2.8	78	98
3.0	67	91
3.2	58	86
3.4	50	81
3.6	44	77
3.8	39	74
4.0	34	70

50/ ECO (kg/m²)		
	2 Openings	
L	Pressure	Suction
0.8	357	369
1.0	277	289
1.2	225	237
1.4	189	201
1.6	162	175
1.8	142	154
2.0	126	138
2.2	113	126
2.4	103	115
2.6	93	106
2.8	86	99
3.0	77	92
3.2	67	87
3.4	59	82
3.6	52	77
3.8	46	74
4.0	40	70

30/0.4-0.4 (kg/m²)		
	2 Openings	
L	Pressure	Suction
0.8	306	322
1.0	237	253
1.2	192	208
1.4	161	177
1.6	138	154
1.8	121	137
2.0	107	123
2.2	96	112
2.4	87	103
2.6	79	95
2.8	72	89
3.0	67	83
3.2	62	78
3.4	55	74
3.6	50	69
3.8	44	63
4.0	38	58

40/0.4-0.4 (kg/m²)		
	2 Openings	
L	Pressure	Suction
0.8	333	349
1.0	259	275
1.2	210	226
1.4	175	192
1.6	150	167
1.8	131	147
2.0	116	132
2.2	104	120
2.4	94	110
2.6	86	102
2.8	79	95
3.0	73	89
3.2	66	84
3.4	62	79
3.6	57	75
3.8	52	71
4.0	46	68

50/0.4-0.4 (kg/m²)		
	2 Openings	
L	Pressure	Suction
0.8	360	376
1.0	280	296
1.2	227	243
1.4	190	206
1.6	163	179
1.8	142	158
2.0	126	142
2.2	112	129
2.4	102	118
2.6	94	109
2.8	87	101
3.0	79	95
3.2	73	89
3.4	68	84
3.6	64	80
3.8	60	76
4.0	54	72

Permissible service loads, uniformly distributed in kg/m2. The tables have been obtained based on a calculation methodology established in accordance with the provisions of the EAE-2012 standard and the EC-3, considering only the upper steel sheet as a structural element. These results comply with the Ultimate Limit States of normal and tangential stresses prescribed in said standards and with a limitation of the Serviceability Limit State for deformations of L/200.

RESISTANCE TABLES

30/0.5-0.5 (kg/m²)		
	2 Openings	
L	Pressure	Suction
0.8	308	328
1.0	238	259
1.2	193	213
1.4	161	181
1.6	138	158
1.8	120	140
2.0	106	126
2.2	94	115
2.4	85	105
2.6	77	98
2.8	71	91
3.0	65	85
3.2	60	81
3.4	57	76
3.6	52	72
3.8	49	69
4.0	46	66

40/0.5-0.5 (kg/m²)		
	2 Openings	
L	Pressure	Suction
0.8	335	355
1.0	260	280
1.2	210	231
1.4	176	196
1.6	150	170
1.8	131	151
2.0	115	136
2.2	103	123
2.4	93	113
2.6	85	105
2.8	77	98
3.0	73	91
3.2	68	86
3.4	61	81
3.6	59	77
3.8	53	74
4.0	50	70

50/0.5-0.5 (kg/m²)		
	2 Openings	
-		
L	Pressure	Suction
0.8	362	382
1.0	281	301
1.2	228	248
1.4	190	211
1.6	163	183
1.8	142	162
2.0	126	145
2.2	113	132
2.4	101	121
2.6	94	112
2.8	87	104
3.0	78	97
3.2	72	92
3.4	67	87
3.6	63	82
3.8	59	78
4.0	55	75

Permissible service loads, uniformly distributed in kg/m2. The tables have been obtained based on a calculation methodology established in accordance with the provisions of the EAE-2012 standard and the EC-3, considering only the upper steel sheet as a structural element. These results comply with the Ultimate Limit States of normal and tangential stresses prescribed in said standards and with a limitation of the Serviceability Limit State for deformations of L/200.